INTRODUCTION

Pierre de Fermat (1601 - 1665) was born at Beaumont-&e—“
Lomagne in France and was the son of a leather merchant Domlnlque
‘Fermat, the second consul of Beaumont. ~ His early educatlon was at Ealio
. home, and later he went to Toulouse to study for hlS eventual careere - t;feﬁl
in, the maglstry : e e

ThlS information would be of no 1nterest to us today

~ except for the fact that when he dled Fermat was one of the most

famous mathematicians in Europe. His outstandlng contr1but10ns¢were_gf
in many fields of mathematlcs 1nc1ud1ng optics, the theory of D k 
tangents, quadrature, maxima and m1n1ma, the beginnings of analytlc -
geometry, and, most importantly as far as the famous theorem that - ‘7,
bears his name is concerned number theory. ;'_>‘v g;;» _53;5;51ef

Fermat believed that the. theofy of mumbers hed.been _ vy
neglected. He complained that hardly anyone understood arlthmetlcalifﬁ'~
questions and believed that number theory had been too closely |
~allied to geometry (see [4], page 274). In maklng good these
deficiencies, Fermat showed his brilliance and became the greatest
- number theorist since Dlophantus. ' o '

The obJect of thlS essay is to trace the hlstory of oge
of his conjectures, the now famous "Fermats Last Theorem'. ~ This -

'theorem' has had a long and chequered career, with many people

either claiming to have a proof, or working towards a proof, as the
following pages will show. ’




In 1670, five years after the death of Pierre de Fermat a

new edition of C. G Bachet's (1581 - 1638) ed1t10n of D1ophantus';*“‘

Arlthmetlca was publlshed.- This book was the flrst step taken by
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Fermat's son Samuel in hav1ng his famous father s mathemat1cal dlscover1es,
commentaries and correspondences put 1n publlshable form.\ Samuel along

with many mathemat1c1ans of hlS t1me, recognlzed the greatness of Fermats
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work, and no doubt feared that he would be forgotten and much valuable

1nformat10n lost unless the work was publlshed posthumously.

B A,

The reason for publlshlng the new ed1t1on of Dlophantus was ,
;' » that it included Fermat's marginal notes as an appendlx . The second f&7
: of the 48 "Observations on D1ophantus" was wr1tten in the ‘margin next b
to problem 8 in Book II, which was "to d1V1de a glven square number |

.into two squares,' to whlch,Fermat added the comment ' "In contrast

it is impossible to d1v1de a cube into two cubes or a fourth power 1nto -
f two fourth.powers or in general any power beyond the square 1nto powers
of the same degree; of this I have dlscovered a very wonderful o
demonstration (demonstrationen mlrabllem sane detex1) . Th1s margln 1s
too narrow to contain it." (see [81, page 27) Thls statement N

originally written nearly thirty years before Fermat's death is now known
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as FERMAT'S LAST THEOREM.

Its fame is probably due to the fact that 1t is one of the
very few unsolved problems in mathematlcs that can be understood by ‘
anyone with an elementary knowledge of mathemat1cs Add1t10nally,

although it is generally accepted that the Last Theorem is of "but -
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slight interest today, its importance in the development of arithmetic
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and modern algebra has been very great'. (see [2] p.157). : e




The reason for the name Fermat's‘Last Theorem (hereafter,_‘

abreviated to FLT) is unclear One p0551b1e explanatlon is that ff ”v
of the many‘unproved theorems that Fernat stated, this is the 1ast one.:
that remains unproved (see [3], p. 2) - It should also be noted that

’ Permat may not have been the flrst person to con51der the prop051t1on.
As early as 970, the work of Abu Dschafar Mhhamed,Ibn Allusaln 1mp11es ;
that the Arab mathemat1c1an Alhogendl tr1ed unsuccessfully to prove
the case for n = 3. (see [9], page 273)_, eThusrlt is probable that
other mathematicians prior to Fermat had reached his conc1u51on, but

his name is assoc1ated with it because he claimed to have a proof 3ls'

BE is, of course, assumed that Fermat meant, in.statingh;:jt
his theorem, that there are no rational numbers x, Y, 2 such that ;fj
X+ y =z (n > 2). ThlS follows because Dlophantus dealt exc1u51ve1y
with rational numbers, and if irrationals were permltted the 51mp1e .
solution of Z = ,/g——:_;ﬁ- would follow. Further we can restrlct the
discussion to whole number or integer solutions, since if d is the o L
lowest common denominator of x, y and z then we would have

)™ + (yd)® cx + Y

,.,
]

(zd)"

’

Additionally, we can also assume that we are dealing with positive numbers
as Diophantus and Fermat both dealt with positive numbers, and negative

numbers and zero were still viewed with suspicion even in Fermat's time.

Hence, we can state FLT as claiming that if n is an integer
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greater than 2, then it is impossible to find positive whole mumbers ...

x, ¥ and z such that x® + yn = zn.”
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Although Fermat did not give the general solution of his
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_in the posthumously published works as part of Observatlon 45 on
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theorem,' he did prove the case of n = 4 and thlS was 1nc1uded by Samuel

Diophantus.

- The followihg »is a proef ef the case n = 4 Although not
the same as that of Fermat it does use the method of 1nf1n1te descent
an invention of Fermat Brlefly stated thlS method says,:" "'Suppose
that the assumption that a glven p051t1ve 1nteger has a set of propert1es '
implies that there is a smaller p051tlve 1nteger w1th the same set of
properties. Then no positive 1nteger ‘can have thls set of propertles" ’

(see E5], p. 9)
Assume x* + y~ = z°, where no two of x, y and z have
a common divisor greater. than 1. : e . ,

Hence, xz, y2 and z° form a primitive Pythagorean triple and we can”." '

]
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2 p2 - q2
where p’'and q are relatively prime, of opposite parlty a.nd p > q ) ©

The second equation can be written as

y2 + q2 p , making y, q and p a prnnltlve Pythagorean

triple. So p is odd and q must be even. ‘p/ Zf%j{&%&%)

Hence, g = 2ab
v - 2 12
D - 22 12

i -

where a and b are relatively prime, of opposite parity and a b >. o,

Thus, x? = 2pq = 4ab(a2 + b?)

Hence, ab(a2 + bz-)_ is a square. ;2‘6&2 = Vaad iof @Aé[‘eg\é

W
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Now, ab and (a + b ) nust be relatlvely prlme, therefore they must both
be squares. » ' -

If ab 1s a square, then both.a and b must be squares so we can put h7ff‘7

a2 +‘b? 1s a square Notlng that 1n our »

f1rst steps the only assumptlon that we made about z was that 1t was

a square, the above fact sufflces for us to apply the method of 1nf1n1te ; ﬁi‘Fd

descent.

In other words, starting with,x and y such,that'

- y4 is a square, we have found a new pair.of p051t1ve 1ntegers -

Xand Y such that X* o+ Y isa square, coupled with the fact: that

X4 +Y4,=8.2 +b2 =p<p\+q "'Z(Z =X4+'y4-i

So we have an infinite descendlng sequence of p051tlve 1ntegers wh1ch

is impossible. Hence our assumpt1on is false and FLT holds for

n=4,

From this proof it follows that FLT 1is true for all
exponents n that are divisible by 4. Further we can showathat once ~
FLT has been proved in the case n = 4 the proof of the general case

reduces to the proof of the case in which n > 2.15 prlme.

Although the case n = 3 was not proved,completely for ;h“;
nearly one hundred years, in his correspondence to Qarcavl,.Fermat:“
counted the impossibility of solving x> + y3 *,23 among. the theorems
proved by infinite descent. It has been suggested (See [S51, p. 345) =
that he may have believed that thlS method of 1nf1n1te descent would
work for all cases. However, Just as his prime number conJecture

n

(numbers of the form * 22 + 1) breaks down for n =5, so too the proof

by infinite descent of FLT makes a s1gn1f1cant Jump in d1ff1cu1ty for
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2 5 and fails altogether for n > 23.

The greatest mathemat1c1an of the elghteenth century, ;Ji%f'
Lennhard Euler (1707 - 1783) prov1ded the next step im. the h1story ofﬁi -
EEE. It is generally understood that Euler prov1ded an 1ncomplete ﬁ;ﬂ d-
proof for the case n = =3 whlch was subsequently completed by others ;E:=7h
(see [61, p.510). Admlttedly, his proof Wthh appeared ln hlS -
Algebra (1770), contained a basic fallacy whlch,he apparently did notp“d{'
recognize.  However, his elegant proof “can be corrected by br1ng1ng"v
in arguments which Euler used to prove other. propos1t1ons of Fermat
(see [31, p-40). Add1t10nally, it should be noted that Euler used
Fermat's method of infinite descent 1n his "proof", wh1ch,was f1rst ~_‘_ H

mentloned 1n a letter to Goldbach in 1753

~ Although progress in number theory was'enormous during the
next ninety or so years (due in large measure to Lagrange, Gauss and

Legendre), there was not much progress towards a general proof of FLT

Howérer, this does not mean that there was no interest in
FLT. In 1816 the Paris Academy proposed that the proof (or disproof)

of FLT was its prize,problem for the period 1816-18.

One person who did play a part in the development of the
theorem at this time was Sophie Germain (1776 - 1831).a_ She is onevof-
the very few women who have been able to 'make their presence felt'
in the world of higher mathematics. Part of herf strategy in overcoming
the prejudice against women was to correspond with Gauss under the >

masculine pseudonym of Mr. Leblanc. Fortunately, Gauss' reaction .
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upon discovering of her true identity was one of delight and admiration,!

and the good relations that she developed w1th.both Gauss and Legendre

 meant that her dlscoverles dld not go unnotlced or. unrecognlzed

Her work on FLT led her to sp11t the problem 1nto two parts,‘
whlch,are now known as Case I and Case II of the theorem.A_ Case I is

that in wh1ch none of the three numbers x, y, z 1s d1v151b1e by n 7ﬁh :"

and Case II is that 1n whlch,one and only one of the three numbers is -

divisible by n (note that we cannot have two of ‘the numbers d1V151b1e '

by n because then the third number becomes d1v131b1e by n)

Sophle Germaln S Theorem states (see [3], page 64), ‘?i_‘j
Let n be an odd primc. [f there is an aux111ary prime p with théxioeo
Propertles that‘ . - .
@ x vy o -0 mod p implies x = 0O ,Qr.y,s Q,;or z EIQ,mQa,P,; -
2] x - nmod p ie impossible,

then Case I of ELT‘is truc for n.

Case I of FLT was then shown to be true for all primes 1éss;>,
than 100 by Sophie Germain, and Legendre extended this result to all odd
primes less than 197 as well as others. Thue it became olear that the
more difficult part seemed to be Case II as the above was found before

FLT was proved for the case n = 5.

In 1825, the case n = 5 was solved by the combined powers
of the German mathematician Dirichlet and Legendre. Of interest in this
sharing of credit is the fact that Dirichlet was only 20 at the time,

while Legendre was past 70, providing a contradiction to the usual -

contention that mathematics is the domain of younger men.
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. tied to each spe01f1c case espec1a11y w1th n 7 that the problem

any 51gn1f1cant progress.

- The next cases to follow were n = 14, proved by Dirichlet.in’

1832, and the difficult case of n = 7, proved by Lamé in 1839 *s»Upiuntil .

this time, it had been the hope that by f1nd1ng proof for spec1f1c cases, L -
the general case would eventually emerge. Unfortunately, the klnds of

arguments that had to be used began to get so 1nvolved and seemed 50 gj:..,;:

looked worse, rather than better.: Thus 1t was g01ng to take a -

revolutlonary change in the method of attack.of the problem to make

This revolutlonary change came 'in the monumental year of
1847, which revealed the br1111ance of Ernst Eduard Kummer (1810 1893)
Early in the year, FLT had come under con51derable dlscuss1on in the -
Paris Academy, with Cauchy and Lamé in partlcular belleV1ng that they
were close to prov1ng 1t They hoped to be able to decompose x y?iif;=xzt”»'
completely into n linear factors us1ng complex numbers and then apply |
the method of infinite descent. Their enthu51asm was-not shared by;alllv
the members of the Academy and Liouville, inrparticular cast doubtslonf -

the proposed proof.

The major weakness of the 'proof' was that'it presumed unique
factorization of certaingtypes of complex,numbers.; :Thepfact,that this _
presumption was invalid was pointed out by Liouville to the Academvahen
he read a letter from Kumer, which included material written 3,yearsf“
earlier, proving that unique factorization fails in'thegcomplex case;'

In his earlier considerations, Kummer had been looking at algebraic
numbers, which are formed by the roots of an equation uith rational -
coefficients. Primes in algebraic numbers are detined as in common
arithmetic, but the'self-evident' theorem that every integer in every

algebraic number field can be built up in essentially one way only by
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multiplying primes is false. = This seemed to be a rather chaotic =
situation, and 1t needed a mathemat1c1an of the flrst rank to restore

order (see [6] page 512).

- This restoration of order was provided by the brilliance

of Kummer, who restored unique factorisation by'the introduction ofa

new species of what he called "ideal numbers" | ThlS creation led to.
Kummer's monumental proof of FLT for a large class of prlme number fvi |
exponents which are now known as regular prlmes. Spec1f1ca11y,
Kummer's theorem states: Let P be an odd prlme;é: A suffrc1ent“fi
condition for Fermat's Last Theorem to be true for the exponent p {fﬁA
is that p not divide the numerators of the Bernoulli numbers Bé;

B4, ......, Bp3 [cece [31, oage V). Possibly moved by the_greatj‘
progress that was made with FLT by Kumnmer, the Paris Academy in 1849
endowed a gold medal valued at 3000 franos for a,complete soiution:

No paper met the conditions, even on extension of the terminal date,

and so the medal was presented to Kummer (see [9], page 278)
Theﬁregular primes,p)'that Kummer's proof deals with may
be characterised by the condition that p does not divide the

Bernoul 11 number, B2k, for 2k = 2;4,.... , p-3.

The Bernoulli numbers are defined by the power series expansion

The importance of Kummers proof is that it applies to all regular '
primes, and thus this large class of primes does not have to be

considered in any attempt at a general proof.

o
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Unfortunately; it has not yet been establ1shed hOW’many

regular prnnes there are, although it is suspected that there are ﬂfﬁf'"

1nf1n1te1y many of them. However, it has been proved that there are jfif_»lﬂ'i"”

1nf1n1te1y many 1rregular prlmes. '

- By being able to ignore the regular primes‘(becausevof;?
Kumer's result) and concentrate on the irregularhprimes ‘it has

recently been established (Wagstaff 1976) that FLT holds for every

pr1me exponent less than 125 000 (see [7], page 230)

Although Kummer's contribution to FLT has probably heen fé:vb‘ ' eftxwﬂ
the most 51gn1f1cant step made towards its proof thlS does ‘not mean,: -
that there has not been much interest in the theorem since hlS t1me.-,p _
So great has been the 1nterest that in 1908, Dr. Paul Wblfskehl of ;J | -f;lé
Darnstadt offered a prize of 1 000 000 marks for a proof, whlch,must""
be published and accepted by the Academy -of Sc1ences in Gott1ngen

(see [81, page 278) Naturally, a flood of amateur solutlons was -

submitted until post—world war I 1nf1at1on devalued the prlze.“‘"ﬁa"

However, the economic recovery of Germany has meant that the pr1ze -

has now risen back up to the equlvalent of about 4 000 Amerlcan dollars. 7 ﬂ

Notwithstanding the fact that no general solution to FLT P
has been found, many interesting results concerning the th¢°rem.have;'

been found since the time of Kummer. One rather fascinating result

was proved in 1933 by H. Kapferrer, to the effect that the existence .
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of a solution of the equation - y2 = 33.22’1—2&(2n in rationalu
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integers x, y, z, any two of which have no common factor > | , is

equivalent to the ex1stence of a solution of Fermat's equation
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= 10 -

u- -V = W' (see £63, page 510).

The first case of FLT has been extended far beyond the proof

- for primes less than 125 000 by Brillhart, Tonasc1a and Welnberger (1971)_-

who have extended this case to include every prnne exPonent less than e

. =% 10 Their result was an extension of work carrled out earller 1n

this century by Wleferlch (1909) ernnanoff (1910) and Frobemus o
and Vandiver (1914).

However primes larger than 3 x 10° have been found to o g
satisfy FLT. - In fact, the first case has been found to hold for the
largest prime known today, thlS being the Mersenne number Mq ;- 1
where q = 19937,  Following the dlscovery of its prlmallty, the proof
that the first case holds for it followed from the earller work of -

Wleferlch, mentioned above (see [7], page 250,

Naturally, throughout the centuries since Fermat proposed

his famous 'theorem', many people have searched o = counter example -

that would prove the theorem wrong. No one has yet come up with one,
and some very interest:ing work has been done to establish how large the '
numbers in such a counter-example would need to be. For example, ‘

in 1856, Grunert shoued that if x" +,«yn = where ‘0<'xv_<}'< Z,

then x>n . This very effectively shows that it is no ué_e to try to
find a counter example with small numbersv, for ifn - 10l > thevnumbers

in the counter example would be at least 102101,

Although such a number is large, it is small in comparison

P

with recently found lower bounds for a counter example. In 1953, Inkeri

proved that if the first case fails for the exponent p, where x, y, z

0 0-/110, o
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are integers, 0<x<y<z, p does not divide xyz, and xF +yP =2FP -
P

then 3
: : D +
, - (10g(3p§) '

and, for the general case,k

xa5p?™E . (e [7], pape23B) na Ll
Using the figure of 125000 from Wagstaff's result, we can
substitute this for p in the fofmula;for the geﬁeral case;iand o v

that x must be greater than a numberfwith 3 biliioh digits. If this

is not already large enough; when we substitute the figure 3 x 109;;;

from Brillhart, Tonasci and Weinberger's results in the formula for'~"
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the first case, we obtain

3x109. -

. ><2'x 33 x 1027'+‘3‘x‘109>
‘ log @ x 1)

and this number has more than 80 billion digits!

Thus it is not surprising that serious mathematicians

are concentrating on proving the theorem, not disproving it!

In conclusion, we can see that three centuries of
mathematical endeavour has failed to prove FLT. However;'the séaréh 
has by no means been in vain, for it has been instrumental in the
development of number theory and has led to many other discoveries ina...
this field. Additionally, although many would conclﬁde that Fermat
did not actually have a solution, his use of the phrase 'a very

wonderful demonstration" leaves a nagging doubt that perhaps there may

be a straightforward, elegant proof that will one day be rediscovered,
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